k-svd字典学习,稀疏编码

发布时间:2017-7-9 7:08:05编辑:www.fx114.net 分享查询网我要评论
本篇文章主要介绍了"k-svd字典学习,稀疏编码 ",主要涉及到k-svd字典学习,稀疏编码 方面的内容,对于k-svd字典学习,稀疏编码 感兴趣的同学可以参考一下。

 1.     K-SVD usage:

Design/Learn a dictionary adaptively to betterfit the model and achieve sparse signal representations.

2.     Main Problem:

Y = DX

Where Y∈R(n*N), D∈R(n*K), X∈R(k*N), X is a sparse matrix.

3.    Objective function

 

4.       K-SVD的求解

Iterative solution: 求X的系数编码(MP/OMP/BP/FOCUSS),更新字典(Regression).

K-SVD优化:也是K-SVD与MOD的不同之处,字典的逐列更新:

假设系数X和字典D都是固定的,要更新字典的第k列dk,领稀疏矩阵X中与dk相乘的第k行记做,则目标函数可以重写为:

 

上式中,DX被分解为K个秩为1的矩阵的和,假设其中K-1项都是固定的,剩下的1列就是要处理更新的第k个。矩阵Ek表示去掉原子dk的成分在所有N个样本中造成的误差。

5.       提取稀疏项

 如果在4.中这一步就用SVD更新dk,SVD能找到距离Ek最近的秩为1的矩阵,但这样得到的系数不稀疏,换句话说,与更新dk的非零元所处位置和value不一样。那怎么办呢?直观地想,只保留系数中的非零值,再进行SVD分解就不会出现这种现象了。所以对Ek做变换,中只保留x中非零位置的,Ek只保留dk中非零位置乘积后的那些项。形成,将做SVD分解,更新dk

6.       总结

K-SVD总可以保证误差单调下降或不变,但需要合理设置字典大小和稀疏度。

参考:http://blog.csdn.net/abcjennifer/article/details/8693342


上一篇:MySQL -- 单行函数
下一篇:bootstrap -- 学习之流动布局

相关文章

相关评论

本站评论功能暂时取消,后续此功能例行通知。

一、不得利用本站危害国家安全、泄露国家秘密,不得侵犯国家社会集体的和公民的合法权益,不得利用本站制作、复制和传播不法有害信息!

二、互相尊重,对自己的言论和行为负责。

好贷网好贷款