详解ROC/AUC计算过程

发布时间:2017-2-26 10:44:53编辑:www.fx114.net 分享查询网我要评论
本篇文章主要介绍了"详解ROC/AUC计算过程",主要涉及到详解ROC/AUC计算过程方面的内容,对于详解ROC/AUC计算过程感兴趣的同学可以参考一下。

ROC和AUC定义

ROC全称是“受试者工作特征”(Receiver Operating Characteristic)。ROC曲线的面积就是AUC(Area Under the Curve)。AUC用于衡量“二分类问题”机器学习算法性能(泛化能力)。

Python中sklearn直接提供了用于计算ROC的函数[1],下面就把函数背后的计算过程详细讲一下。

计算ROC需要知道的关键概念

首先,解释几个二分类问题中常用的概念:True Positive, False Positive, True Negative, False Negative。它们是根据真实类别与预测类别的组合来区分的。

假设有一批test样本,这些样本只有两种类别:Positive和Negative。机器学习算法预测类别如下图(左半部分预测类别为P,右半部分预测类别为N),而样本中真实的P类别用红色表示(除去红色的部分就是真实的N类别)。
这里写图片描述
TP:预测类别是P,真实类别也是P
FP:预测类别是P,真实类别是N
TN:预测类别是N,真实类别也是N
FN:预测类别是N,真实类别是P
这里写图片描述

样本中的真实P类别总数即TP+FN。TPR即True Positive Rate,TPR = TP/(TP+FN)。
同理,样本中的真实N类别总数为FP+TN。FPR即False Positive Rate,FPR=FP/(TN+FP)。

还有一个概念叫”截断点”。机器学习算法对test样本进行预测后,可以输出各test样本对某个类别的相似度概率。比如t1是P类别的概率为0.3,一般我们认为概率低于0.5,t1就属于类别N。这里的0.5,就是”截断点”。
总结一下,对于计算ROC,最重要的三个概念就是TPR, FPR, 截断点

截断点取不同的值,TPRFPR的计算结果也不同。将截断点不同取值下对应的TPRFPR结果画于二维坐标系中得到的曲线,就是ROC曲线。横轴用FPR表示。

sklearn计算ROC

sklearn给出了一个计算ROC的例子[1]。

y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)

通过计算,得到的结果(TPR, FPR, 截断点)为

fpr = array([ 0. ,  0.5,  0.5,  1. ])
tpr = array([ 0.5,  0.5,  1. ,  1. ])
thresholds = array([ 0.8 ,  0.4 ,  0.35,  0.1 ])#截断点

将结果中的FPR与TPR画到二维坐标中,得到的ROC曲线如下(蓝色线条表示),ROC曲线的面积用AUC表示(淡黄色阴影部分)。

这里写图片描述

详细计算过程

上例给出的数据如下

y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])

用这个数据,计算TPR,FPR的过程是怎么样的呢?

1. 分析数据

y是一个一维数组(样本的真实分类)。数组值表示类别(一共有两类,1和2)。我们假设y中的1表示Negative,2表示Positive。
score即各个样本属于Positive类别的概率。

2. 针对score,将数据排序

样本 预测属于P的概率(score) 真实类别
y[0] 0.1 N
y[2] 0.35 P
y[1] 0.4 N
y[3] 0.8 P

3. 将截断点依次取为score值

截断点依次取值为0.1,0.35,0.4,0.8时,计算TPRFPR的结果。

3.1 截断点为0.1

说明只要score>=0.1,它的预测类别就是P。
此时,因为4个样本的score都大于等于0.1,所以,所有样本的预测类别都为P。

这里写图片描述

TPR = TP/(TP+FN) = 1
FPR = FP/(TN+FP) = 1

3.2 截断点为0.35

说明只要score>=0.35,它的预测类别就是P。
此时,因为4个样本的score有3个大于等于0.35。所以,所有样本的预测类有3个为P(2个预测正确,1一个预测错误);1个样本被预测为N(预测正确)。

这里写图片描述

TPR = TP/(TP+FN) = 1
FPR = FP/(TN+FP) = 0.5

3.3 截断点为0.4

说明只要score>=0.4,它的预测类别就是P。
此时,因为4个样本的score有2个大于等于0.4。所以,所有样本的预测类有2个为P(1个预测正确,1一个预测错误);2个样本被预测为N(1个预测正确,1一个预测错误)。
这里写图片描述

TPR = TP/(TP+FN) = 0.5
FPR = FP/(TN+FP) = 0.5

3.4 截断点为0.8

说明只要score>=0.8,它的预测类别就是P。所以,所有样本的预测类有1个为P(1个预测正确);3个样本被预测为N(2个预测正确,1一个预测错误)。

这里写图片描述

TPR = TP/(TP+FN) = 0.5
FPR = FP/(TN+FP) = 0

心得

用图形表示TPR和FPR的计算过程,更容易记住

这里写图片描述

最理想的分类器,就是对样本分类完全正确,即FP=0,FN=0。所以理想分类器TPR=1,FPR=0。

参考:

  1. http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
  2. ROC计算公式,http://blog.yhat.com/posts/roc-curves.html
  3. 《机器学习》,周志华


上一篇:用python写网络爬虫笔记
下一篇:mongodb的一些内容

相关文章

相关评论

本站评论功能暂时取消,后续此功能例行通知。

一、不得利用本站危害国家安全、泄露国家秘密,不得侵犯国家社会集体的和公民的合法权益,不得利用本站制作、复制和传播不法有害信息!

二、互相尊重,对自己的言论和行为负责。

好贷网好贷款